EE 435

Lecture 32

- Switch Implementation
- Current Steering DACs

Review from Last Lecture R-String DAC

Basic R-String DAC including Logic to Control Switches

Review from Last Lecture R-String DAC

Review from Last Lecture R-String DAC

Review from Last Lecture

Note Dual Ladder is used !

A 10-b 50-MHz CMOS D/A Converter with 75-Ω Buffer

MARCEL J. M. PELGROM, MEMBER, IEEE

Review from Last Lecture

Basic R-String DAC

For all b_1 and b_2 , $R_U+R_L=R$

- Another Segmented DAC structure
- Can be viewed as a "dither" DAC
- Often n₁ is much smaller than n₂
- Dither can be used in other applications as well

Review from Last Lecture

Resistor Layout

Standard Series Layout of 64 resistors

Review from Last Lecture Resistor Layout

Correction on Terminology

Layout of 64 resistors with reduced gradient sensitivity

Switches used extensively in data converters ! Switch Implementation Issues

Transmission Gate Impedance Can be Reasonably constant

Even Transmission Gate Does Not Perform Well

Gap where neither switch is working

Current will be "steered" to a resistive load (on chip)

Output could be a current (user supplies load)

Basic Concept of Current Steering DACs

What is important is the current generated, not whether it comes from a "current source"

Many potential current generator blocks, just require that all be ideally identical

Inherently Insensitive to Nonlinearities in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding
- Excellent DNL properties
- INL may be poor, typically near mid range
- INL is a random variable with variance approximately proportional to area
- Area gets large for good yield with large n
- Each additional bit of resolution requires a factor of 2 increase in area if same sized resistors are used
- Each additional bit of resolution requires another factor of 4 increase in area to maintain the same yield

 $\sigma = \frac{A_{PEL}}{\sqrt{A}}$

Inherently Insensitive to Nonlinearities in Switches and Resistors Smaller ON resistance and less phase-shift from clock edges

- Termed "bottom plate switching"
- Thermometer coded

Transistor Implementation of Switches

Transistor Implementation of Switches

How should the op amp be compensated?

Assume k switches are on 0<k<N-1

$$\beta = \frac{\frac{R_{CELL}}{k}}{\frac{R_{CELL}}{k} + R_{F}} = \frac{R_{CELL}}{R_{CELL} + kR_{F}}$$
 If $V_{OUTFS} = V_{REF}$ $R_{CELL} = NR_{F}$
 $0.5 < \beta \le 1$

How should the op amp be compensated?

- DNL may be a major problem
- INL performance about same as thermometer coded if same unit resistors used
- Sizing and layout of switches is critical
- Unary resistor arrays usually used with common-centroid layout(at least for MSB)
- Ratio matching strongly dependent upon area (if common-centroid used to eliminate gradients)
- INL is a random variable with variance approximately proportional to
- Area gets large for good yield with large n

Observe thermometer coding and binary weighted both offer some major advantages and some major limitations

INL may be poor, typically near mid range

approximately $\sigma = \frac{A_{PEL}}{\sqrt{\Lambda}}$

Consider a k-bit structure that has an acceptable (and desired) yield of Y

Can a k+1 bit structure be easily implemented by simply making 2 copies of the resistor array and adding one bit to the decoder?

The one-afternoon design ?

Binary-Weighted Resistor Arrays

Actual layout of resistors is very important

As stated earlier, bundled unary cells are almost always used

Segmented Resistor Arrays

- Combines two types of architectures
- Inherits advantages of both thermometer and binary approach
- Minimizes limitations of both thermometer and binary approach

Stay Safe and Stay Healthy !

End of Lecture 32